PCA and kernel PCA using polynomial filtering: a case study on face recognition∗

نویسنده

  • E. Kokiopoulou
چکیده

Principal component analysis (PCA) is an extensively used dimensionality reduction technique, with important applications in many fields such as pattern recognition, computer vision and statistics. It employs the eigenvectors of the covariance matrix of the data to project it on a lower dimensional subspace. Kernel PCA, a generalized version of PCA, performs PCA implicitly in a nonlinearly transformed feature space. In many cases, experiments show that kernel PCA is more effective than conventional PCA. However, the requirement of PCA eigenvectors is a computational bottleneck which poses serious challenges and limits the applicability of PCA-based methods, especially for real-time computations. This paper proposes an alternative framework, relying on polynomial filtering which enables efficient implementations of both PCA and its kernelized version. Further improvements are achieved when polynomial filtering is combined with wavelet transforms to obtain sparse representations of images. We showcase the applicability of the proposed scheme on face recognition. In particular, we consider the eigenfaces and kernel eigenfaces methods which employ PCA and kernel PCA respectively. The numerical experiments reported indicate that the proposed technique competes with the PCA based methods in terms of recognition rate, while being much more efficient in terms of computational and storage cost.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

تشخیص چهره با استفاده از PCA و فیلتر گابور

Methods for face recognition which are based on face structure are among techniques without supervision and produce unfavorable results in the presence of linear changes in images. PCA is a linear transform and a powerful tool for data analysis but does not produce good results for face recognition when there are non-linear changes resulting from changes in position, intensity and gesture in th...

متن کامل

Face Recognition using Eigenfaces , PCA and Supprot Vector Machines

This paper is based on a combination of the principal component analysis (PCA), eigenface and support vector machines. Using N-fold method and with respect to the value of N, any person’s face images are divided into two sections. As a result, vectors of training features and test features are obtain ed. Classification precision and accuracy was examined with three different types of kernel and...

متن کامل

Acquiring Non Linear Subspace for Face Recognition using Symbolic Kernel PCA Method

In this paper, a new technique called symbolic kernel Principal Component Analysis (KPCA) is explored to develop a model for face representation and recognition. The conventional kernel PCA method extracts single valued features from the original image space to represent face images. The proposed method reduces the dimensionality of original image space by representing the face images as symbol...

متن کامل

Recognizing Faces using Kernel Eigenfaces and Support Vector Machines

In face recognition, Principal Component Analysis (PCA) is often used to extract a low dimensional face representation based on the eigenvector of the face image autocorrelation matrix. Kernel Principal Component Analysis (Kernel PCA) has recently been proposed as a non-linear extension of PCA. While PCA is able to discover and represent linearly embedded manifolds, Kernel PCA can extract low d...

متن کامل

Face Detection Technique by Gabor Feature and Kernel Principal Component Extraction Using K-NN Classifier with Varying Distance

Face recognition is always a hot topic in research. In this paper, we represent a robust method of face recognition using gabor feature extraction, kernel PCA and K-NN classifier. Gabor features are calculated for each face images then it’s polynomial kernel function is calculated, it is directly applied to the K-NN classifier. The effectiveness of the proposed method is demonstrated by the exp...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004